
Princeton Univ. F‘22 COS 521: Advanced Algorithm Design

Lecture 19: Low Rank Approximation and the Singular
Value Decomposition

Lecturer: Huacheng Yu Last updated: November 28, 2022

This unit is about finding compressed data representations – e.g. compressed represen-
tations of vectors a1, a2, . . . an ∈ Rd. The techniques we have discussed so far (Johnson-
Lindenstrauss sketching and hashing for similarity search) are oblivious to any structure in
the dataset. They compress each point ai without looking at any other points. In some
ways, this obliviousness is a strength. It makes the methods fast and we can obtain strong
guarantees without making assumptions about our data.

At the same time, obliviousness can be a weakness. Oblivious dimensionality reduction
methods don’t take advantage of structure which might make better compression possible.
Moreover, finding such structure might be interesting in its own right.

1 Low-rank structure

Today we will discuss a type of structure that can 1) allow for better dimensionality re-
duction, 2) lead to very interesting scientific discoveries and insights about data, and 3) is
remarkably common across diverse application areas.

In particular, we are interested in datasets where most of our vectors a1, . . . , an can be
well approximated as a linear combination of a small ground set of vectors in Rd, {b1, . . . , bk}.
I.e. for some set of k coefficients {C1i, C2i, . . . , Cki} we approximate ai by:

ai ≈
k∑

j=1

Cjibj .

Let A ∈ Rd×n be a data matrix which contains each ai as a column. If A is a rank k
matrix (i.e. a “low-rank” matrix), then it would be possible to find some ground set and
coefficients so that, for all i, this is actually an equality: ai =

∑k
j=1Cjibj . Geometrically,

this would mean that all points lie on a low dimensional hyperplane in Rd (see Figure 1)

Figure 1: If a1, . . . , an lie on a low dimensional hyperplane, then A = [a1, . . . , an] is exactly
low rank, so it can be written as the product of two matrices, B ∈ Rd×k and C ∈ Rk×n

1

2

We can view the columns of C = [c1, . . . , cn], which are each in Rk, as dimensionality
reductions of a1, . . . , an. In the case when A is low-rank, consider choosing b1, . . . , bk to
be an orthogonal span for the hyperplane containing a1, . . . , an. Then each ci is simply ai
represented in a coordinate basis for the hyperplane. So, for example, ∥ci∥2 = ∥ai∥2 for all
i, ∥ci − cj∥2 = ∥ai − aj∥2 for all i, j, and in general, [c1, . . . , cn] captures all the geometric
information about our original dataset.

Low-rank approximation

Now of course, it’s very rare to find matrices that are actually low rank. On the other hand,
it’s very common to find matrices that are approximately low rank. I.e. where there exists
some set of ground set of vectors {b1, . . . , bk} and some coefficients Cij so that, for example,
the following error measure is small:

n∑
i=1

∥∥∥∥∥∥ai −
k∑

j=1

cijbj

∥∥∥∥∥∥
2

2

= ∥A−BC∥2F . (1)

Here ∥·∥F denotes the Frobenius norm of a matrix (i.e. the square root of its sum of squared
entries):

∥M∥F =

√∑
i,j

M2
ij .

Using the Frobenius norm gives a convenient way of using matrices to express our error
measure. There are other ways to measure if a matrix is “close to a low-rank matrix”, but
Frobenius norm distance is a popular measure and the one we will focus on today.

Computation

If A were exactly low-rank, BC could be found using any standard orthogonalization pro-
cedure for finding a span for A’s columns. On the other, when A is only approximately
low-rank, we ideally want to solve:

min
B∈Rd×k,C∈Rk×n

∥A−BC∥2F . (2)

This is a non-linear, non-convex optimization problem, but surprisingly it can be solved
very efficiently (in low polynomial time). We will discuss one particular method for doing
so in this lecture.

2 Example Applications

Before getting into algorithms, let’s see a few places where low-rank approximation is im-
portant in practice.

3

Latent Semantic Analysis (LSA)

Let’s return to the bag-of-words model discussed in previous lectures. Here each ai rep-
resents the ith document in a database of n documents. The vector has an entry for all
possible words in a given language. At that location, it contains a count for the number of
times that word appeared in document i.

A = [a1, . . . , an] is called the “term-document” matrix – each row corresponds to a term
and each column a document. Term document matrices tend to be close to low-rank, and
algorithms for low-rank approximation can recover that structure. In particular, we can find
an approximation BC for the term-document matrix where B has k columns b1, . . . , bk ∈ Rd

(here d is the number of words in our language) and ∥A−BC∥2F is small.
There are a number of justifications for why this might be the case. For example, one

simple generative model for documents would be to simply look at all of the words in a
language, look at the empirical frequency with which those words occur (e.g. “the” is
used much more frequently than “president”) and then assume that a typical document is
generated by drawing words at random according to their relative frequencies. Of course
this isn’t a very good model, but we can think about how to make it better.

For example, we might notice that documents about politics tend to use the word
“president” much more frequently than those about sports. Moreover, political documents
written in the US tend to use the word “president” more than political articles written in
the UK. Similarly, sports articles written in the US tend to use “touchdown” more than
sports articles written in the UK. We can construct a better model by assuming a document
can be assigned to a mix of potentially overlapping categories – for example, a document
about US environmental policy might have categories “politics”,“for US audience”, and
“environment”. Would could predict the words contained in that document by looking at
the global distribution of words used in the “politics”, “for US audience”, and “environment”
categories, and drawing words at random according to a mixture of those distributions.

This model turns out to be very powerful in predicting the frequency of words in a
document. Since it does so in a linear way (drawing from a linear combination of word
distributions), we expect that A will have a good k-rank approximation. Instead of hand
choosing categories, columns in B can be seen as representing a set of “optimal” categories.

This is the idea behind what’s known as “latent semantic analysis” in natural language
processing. Each column ci ∈ C is viewed as an indicator vector for the presence of different
categories in document ai. As a “semantic representation” for a document, ci’s can be used
to compare or cluster documents. For a more in-depth discussion, check out Chapter 18 in
[2] (freely available online) or [3].

Word embeddings

If columns in C give some sort of meaningful representation of words, what about rows in
B? We have one row for each word in our language. These rows are sometimes called “word
embeddings” – they can give very powerful semantic representations of words. Words that
tend to appear in similar categories of documents (e.g. in a similar context) tend to have
similar word embedding vectors. These embeddings can be used for finding similar words
or synonyms, but also for tasks like solving analogy problems.

4

There are many ways to generate better word embeddings. For example, instead of
looking at term-document co-occurrence, it’s more common to look at more local mea-
sures, like term-sentence co-occurence. Current algorithms are also based on more complex
models than the simple linear model discussed above (see e.g. https://nlp.stanford.

edu/projects/glove/ or https://code.google.com/archive/p/word2vec/), but it all
started with basic LSA and low-rank approximation!

Visualizing and understanding genetic data

Genetic data tends to be low-rank. Consider a vector ai for each individual in a population
that holds a numerical representation of that individual’s genome (e.g. a bit vector, with
every two bits representing the expression of a single nucleotide, which can take values A,
T, G, or C.). Why might this be the case?

At a course level genetics are controlled largely by ancestry – historically isolated popula-
tions (geographically, culturally, etc.) tend to have very similar genomes, with the exception
of a relatively small number of genes that distinguish individuals. Accordingly, if we let our
set of ground vectors b1, . . . , bk contain representative individuals from different ancestral
populations, we can do a pretty good job reconstructing every ai vector up to small error.
If we take the best low-rank approximation, we can do even better.

One particularly dramatic exposition of the low-rank natural of genetic data is given
in [1]. After a few basic data transformations (mean centering, removing outliers, etc.)
they took a rank-2 approximation of a genetic data set from populations in Europe. This
produced a set of two dimensional vectors, c1, . . . , cn for each individual. When plotting
these points on a two-dimensional grid, the location of each point roughly reflects the
ancestral origin of each individual!

In other words, each ai is well represented by a two dimensional linear model where each
dimension represents the East/West and North/South coordinates of where that individual
is from. In fact, since it was derived from an optimal rank-2 approximation, this is the best
two dimensional linear model for reconstructing A, indicating how important geography is
in genetic variation. I would encourage you to check out the paper (e.g. at https://www.
researchgate.net/publication/23469983_Genes_Mirror_Geography_within_Europe).

3 The Singular Value Decomposition

It turns out that optimal low-rank approximations can be computed using what’s known
at the “singular value decomposition”.

Theorem 1 (Singular Value Decomposition (SVD)). Consider A ∈ Rd×n and let r =
min(d, n). A can always be written as the product of three matrices, A = UΣV T , where:

• U ∈ Rd×r is a matrix with orthonormal columns,

• Σ =

σ1 . . .

σr

 is a non-negative diagonal matrix with entries σ1 ≥ . . . ≥ σr ≥ 0,

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://www.researchgate.net/publication/23469983_Genes_Mirror_Geography_within_Europe
https://www.researchgate.net/publication/23469983_Genes_Mirror_Geography_within_Europe

5

• V ∈ Rn×r is a matrix with orthonormal columns.

U ’s columns are called the “left singular vectors” of A, V ’s columns are its “right singu-
lar vectors”, and σ1, . . . , σr are its “singular values”. When the SVD is computed after
mean centering A’s columns or rows, the singular vectors are sometimes call “principal
components”.

The singular value decomposition is closely related to eigendecomposition: UΣ2UT is
the eigendecomposition of AAT and V Σ2V T is the eigendecomposition of ATA. Using eigen-
decomposition algorithms (e.q. the QR algorithm), it can be computed in approximately
O(nd2) time (assuming d < n).

The existence of the SVD may be surprising – it says that no matter what A looks like,
it can be represented at the product of 3 simple matrices – two orthogonal spans and a
diagonal scaling. The SVD has countless applications in linear algebra, but one of the most
useful is that it can be used to read-off the optimal k-rank approximation for A, for any k.

Claim 2 (Truncated SVD). For any k ∈ 1, . . . ,min(n, d), let Uk ∈ Rd×k contain the first
k columns of U , let Vk ∈ Rn×k contain the first k columns of V , and let Σk be a k × k
diagonal matrix containing A’s first singular values. Then:

∥A− UkΣkV
T
k ∥2F = min

B∈Rd×k,C∈Rk×n
∥A−BC∥2F .

In other words, there is no better rank k approximation for A than UkΣkV
T
k .

Note that, a solution to our original low-rank approximation problem, (2), can be ob-
tained either by setting B = UkΣk and C = V T

k , or by setting B = Uk and C = ΣkV
T
k –

the product BC is the same.
One thing surprising about Claim 2 is that it implies that we can find a basis set

for an optimal k rank approximation in a greedy way. The best ground set of a rank-k
approximation, u1, . . . , uk, just adds one vector to the best basis set for a rank-(k − 1)
approximation, u1, . . . , uk−1.

I’m going to give a proof of Claim 2, but if you have already seen this before in a linear
algebra class, feel free to skip it. Or try to reprove it on your own.

Proof. Case: k = 1.

This statement is easiest to prove for k = 1. For rank 1 approximation our goal is to choose
b ∈ Rd and c ∈ Rn to minimize:

∥A− bcT ∥2F =
n∑

i=1

∥ai − ci · b∥22,

where ci is the ith entry of c (and ai is the ith column of A). Without loss of generality,
we may assume that b is a unit vector. For a given b, it’s clear that we should choose ci so
that ci · b is the projection of ai onto b. I.e. we should set ci = ⟨ai, b⟩ (see Figure 2 for the
geometric intuition). Equivalently, we should set:

c = bTA. (3)

6

So, our rank 1 optimization problem actually reduces to:

min
b∈Rn,∥b∥2=1

∥A− bbTA∥2F . (4)

Figure 2: For an optimal rank 1 approximation with a fixed b, we should always choose ci
so that cib is the projection of ai onto b.

In this case, by Pythagorean theorem,
∑n

i=1 ∥ai − ci · b∥22 =
∑n

i=1 ∥ai∥22 − ∥cib∥22 =
∥A∥2F −

∑n
i=1 ∥cib∥2. So, in fact, solving (4) is actually equivalent to solving:

max
b∈Rn,∥b∥2=1

∥bbTA∥2F . (5)

From this point of view, it is clear that u1 is the optimal choice for b. Writing A using the
SVD, we have

∥bbTA∥2F = ∥bTA∥22 = ∥bTUΣV T ∥22 = ∥bTUΣ∥22 =
r∑

i=1

(bTui)
2σ2

i .

To see the first inequality, observe that bTA is a 1× n matrix, so ||b(bTA)||2F is simply∑d
i=1 b

2
i ||bTA||22 = ||bTA||22, as b is a unit vector. The second inequality is simply applying

the SVD of A. The third inequality follows as V is orthonormal (so multiplying on the right
by V T just changes bases in a norm-preserving manner). To see the final inequality, recall
that bT is a 1 × d vector, and U is a d × r matrix. So bTU is a 1 × r matrix with entries
(bTu1), . . . , (b

Tur), and recall that Σ is diagonal.
Now, because U is orthonormal and ∥b∥22 = 1,

∑r
i=1(b

Tui)
2 = 1. Accordingly, since

σ1 ≥, . . . ,≥ σr,
∑k

i=1(b
Tui)

2σ2
i is maximized when (bTu1)

2 = 1, which can be accomplished
by setting b = u1.

Case: k > 1.

The proof for k > 1 is similar. It will be helpful to use the following:

Claim 3 (Matrix Pythagorean Theorem). If M and N are matrices with mutually orthog-
onal columns, i.e. MTN = 0, then,

∥M +N∥2F = ∥M∥2F + ∥N∥2F .

7

This is a direct consequence of writing ∥M + N∥2F =
∑

i ∥mi + ni∥22 and applying the
Pythagorean theorem to each column mi + ni separately.

As in the rank 1 case, without loss of generality we can view the low rank approximation
problem as choosing an optimal orthonormal matrix B to minimize ∥A−BC∥2F . Using an
identical projection argument (fixing B, what is the optimal C?), the optimal C for a given
B is BTA. So our goal is to solve:

min
B∈Rd×k,BTB=I

∥A−BBTA∥2F . (6)

By matrix Pythagorean theorem applied to ∥(A−BBTA) +BBTA∥2F , we have

∥A−BBTA∥2F = ∥A∥2F − ∥BBTA∥2F

and thus (6) is equivalent to

max
B∈Rd×k,BTB=I

∥BBTA∥2F . (7)

Since A can be written as UΣV T , this is equivalent to solving:

max
B∈Rd×k,BTB=I

∥BBTUΣV T ∥2F = max
B∈Rd×k,BTB=I

∥BTUΣ∥2F

Q = BTU ∈ Rk×r has orthonormal rows, so it’s columns cannot have norm great than 1.
Also the sum of Q’s squared column norms is k (its Frobenius norm squared). It follows
that ∥QΣ∥2F =

∑r
i=1 ∥q∥2iσ2

i ≤ σ2
1 + . . . + σ2

k. This maximum is obtained when Q’s first k
columns are the standard basis vector – i.e. when B = Uk.

4 Greedily constructing low-rank approximations

As mentioned, one thing that’s interesting about the SVD and Claim 2 is that it implies
that we can construct an optimal low-rank approximation in a greedy way: if b1 is the
best basis vector for a rank 1 approximation, then there’s an optimal rank 2 approximation
that maintains b1 as one of its basis vectors. In fact, this observation gives an approach to
proving that the SVD exists for all matrices. Again, if you’ve already seen this proven in
another class, feel free to skip this section.

Consider the following iterative routine, which we will prove constructs a singular value
decomposition for any matrix A:

• Let A(1) = A.

• For i = 1, . . . , r:

– Let bi, ci = argminb,c ∥A(i) − bcT ∥2F .

– Let A(i+1) ← A(i) − bic
T
i and set ui = bi/∥bi∥2, vi = ci/∥ci∥2, σi = ∥bi∥2 · ∥ci∥2.

• Set U = [u1, . . . , ur], V = [v1, . . . , vr], and Σ = diag(σ1, . . . , σr).

8

Note that step one of the procedure requires an algorithm for computing an optimal
rank 1 approximation to a given matrix. At least to prove existence of the SVD, we do
not need an actual implementation of this procedure. However, because we do care about
computing the SVD and rank-k approximations, we will eventually see an algorithm for
solving this rank 1 problem.

We first need to prove the following, which implies that our choice of U is orthonormal:

Claim 4. If b1, . . . , bk are chosen as above, then bTi bj = 0 for all i, j.

Proof. Let’s remove indices to keep notation simple, and consider an optimal rank 1 ap-
proximation bcT for a matrix A. We claim:

1. b is always in the column span of A.

2. bT (A− bcT) = 0

The first point follows from a contradiction argument. If b is not in A’s column span, it can
be written it as Ax+ y for some y orthogonal to all of A’s columns. Then:

∥A− bcT ∥2F = ∥A−AxcT − ycT ∥2F = ∥A−AxcT ∥2F + ∥ycT ∥2F ≥ ∥A−AxcT ∥2F .

The second equality follows from Claim 3 because every column in ycT is orthogonal to
every column in A − AxcT . This is a contradiction because AxcT is a rank 1 matrix that
clearly achieves better error than bcT , which we claimed was chosen to be optimal. So we
conclude that b must in fact lie in A’s column span. The second claim follows from our
earlier projection argument: c(i) is chosen so that c(i)b is the projection of ai onto b, and
thus bT (ai − c(i)b) for all i.

From these two claims, it follows that, for any i, bTi bi+1 = 0, because bi+1 is in the column
span of A(i+1) but bi is orthogonal to that span. Then, by induction bTi bj = 0 for all j > i+1
as well. We will just argue one step of the induction: bTi A

(i+2) = bTi (A
(i+1) − bi+1c

T
i+1) =

0− 0. So bi is orthogonal to anything in the column span of A(i+2), and is thus orthogonal
to bi+2.

The same exact argument (applied to rows instead of columns) also let’s us establish:

Claim 5. If c1, . . . , ck are chosen using our greedy procedure above, then cTi cj = 0 for all
i, j. In other words, our ground basis is orthogonal.

Finally, we note that, since b1, . . . , br are all orthogonal to the column span of A(r+1),
then it must be that A(r+1) = 0. So

∑r
i=1 bic

T
i = A, and thus

∑n
i=1 uiσiv

T
i = A for the

U = [u1, . . . , ur], V = [v1, . . . , vr], and Σ = diag(σ1, . . . , σr) produced by the iterative
algorithm. Combined with Claim 4 and Claim 5 this proves Theorem 1.

5 Computing the best rank-1 approximation

The SVD gives one way of obtaining an optimal low-rank approximation for any rank
parameter k. It can be computed in essentially time O(ndr) time, where r = min(n, d).1

1We say “roughly” because technically there is no “exact” algorithm for the SVD, even in the Real RAM
model of computation. This is consequence of the Abel-Ruffini theorem. Thus, all SVD algorithms are

9

In general, this is too slow from many large data matrices. Next lecture we will discuss
the power method, which gives a much faster way of finding just the top singular vector
of a matrix, which is typically the problem we want to solve in data applications. The
power method runs in approximately O(nd) time. It can thus find find k singular vectors
iteratively in O(ndk) time, which is much faster than a full SVD when k ≪ rank(A).

6 Connection to Other Matrix Decompositions

The singular value decomposition is closely related to other matrix decompositions:

Eigendecomposition The left singular vectors of A are eigenvalues of AAT = UΣ2UT and
the right singular vectors are eigenvectors of ATA. To see that this is the case, note that:

AATui = UΣV TV UTui = UΣei = σiui.

Here ei is the ith standard basis vector: UTui = ei because ui is orthogonal to all other
columns in U .

The connection with eigendecomposition means that any algorithm for eigendecompo-
sition can be used to compute an SVD. Suppose d ≤ n. Then we can compute ATA,
from which we can compute V using an eigendecomposition algorithm. We then have
ΣUT = AV T , so we can obtain Σ and U by normalizing the columns of this matrix and
setting σi to be the normalization factor for column i. This procedure takes O(nd2) time to
compute ATA and roughly O(d3) time to compute the eigendecomposition of this matrix2

On another note, you may recall that any real symmetric matrix M has eigendecompo-
sition UΛUT where U is orthonormal. Λ can have negative diagonal elements, so at least
up to changing signs, M ’s singular vectors are the same as its eigenvectors. It’s singular
values are the absolute values of its eigenvalues.

Principal Component Analysis (PCA) PCA is almost the same as the SVD, however,
before computing singular vectors, we mean center A’s rows: ai → ai − 1

n

∑n
j=1 aj . The

right singular vectors of the resulting matrix are call the “principal components” of A.

7 The Power Method

For an n × d matrix with n ≤ d, we cannot hope to do much better than O(nd2) time
for computing an SVD. In theory, we can speed up the computation of ATA and the
eigendecomposition of this n× n matrix with fast matrix multiplication. Doing so achieves
a runtime of O(ndω−1), where ω is the current best known exponent for d × d matrix

technically approximation algorithms. However, standard methods obtain very good ϵ dependence. E.g. the
QR algorithm can compute a factorization UΣV T with ∥UΣV T − A∥ ≤ ϵ in O(nd2 + d2 log log(1/ϵ)) time.
The second term is ignored because it’s always lower order in practice.

2We say roughly “roughly” because technically there is no “exact” algorithm for the SVD, even in the Real
RAM model of computation. This is consequence of the Abel-Ruffini theorem. Thus, all SVD algorithms
are technically approximation algorithms. However, standard methods obtain very good ϵ dependence. E.g.
the QR algorithm can compute a factorization V Σ2V T with ∥V Σ2V T −ATA∥ ≤ ϵ in O(d3 +d2 log log(1/ϵ))
time. The second term is ignored because it is always lower order in practice.

10

multiplication (ω = 2.3728639... as of 2014 [4]). In practice, however, runtime still scales as
O(nd2).

We want something faster. We are especially interested in algorithms that run more
quickly when we only want to compute a few of A’s top singular vectors, not all n of them
(as is often the case in applications). One such algorithm is the well known power method.
We present a version below for approximately computing the top right singular vector of
A, which can be used to find a best rank 1 approximation:

Power Method

• Initialize z0 ∈ Rd to have every entry a random Gaussian variable. Set z0 = z0/∥z0∥2.

• Repeat: zt+1 ← AT (Azt). zt+1 ← zt+1/∥zt+1∥2.

Theorem 6. Let γ = σ1−σ2
σ1

be a parameter that measures the “gap” between A’s first and

second singular values. After t = O
(
log(d/ϵ)

γ

)
iterations, ∥v1 − zt∥22 ≤ ϵ. I.e. zt is a very

good approximate top right singular vector. The power method runs in O(t · nd) time.

Proof. Write z0 =
∑d

i=1 αivi where vi is the i
th right singular vector of A. Each αi represents

“how much” of singular vector vi is in z0. Let α ∈ Rd be the vector containing these values.
α = V T g/∥g∥2 where g is a vector of independent Gaussians. By rotational invariance of
the Gaussian distribution, V T g is also a random Gaussian vector. So at least to start, z0
contains a random amount of every right singular vector in A.

It’s not hard to check that α1 > 1/poly(d) with high probability and, since z0 has unit
norm, maxi αi = 1. So we at least have a non-negligible component of v1 in z0.

The idea behind the power method is to boost this component so that, eventually, zt
is made up almost entirely of v1. This is accomplished by repeatedly multiplying by ATA.
After t steps, zt = c

(
ATA

)t
z0 for some scale factor c. Since ATA = V Σ2V T , after iteration

t we have:

zt =

d∑
i=1

wivi

where each wi ∼ σ2t
i αi. By our “gap” assumption, σ1

σj
≥ 1 + γ for all j ≥ 2. Accordingly,

after t steps, for all j ≥ 2,

wj

w1
≤ (1 + γ)2t · αi

α1
≤ (1 + γ)2t · poly(d).

If we set t = O
(
log(d/ϵ)

γ

)
then we have

wj

w1
≤

√
ϵ/d, which means that wj ≤

√
ϵ/2d. Since

∥z∥t =
∑d

j=1w
2
j = 1, it follows that w1 ≥ 1− ϵ/2 and thus zTt v1 ≥ (1− ϵ/2). So:

∥v1 − zt∥22 = ∥v1∥22 + ∥z1∥22 − 2zTt v1 ≤ ϵ.

11

So when γ is considered constant, power method converges in log(d/ϵ) iterations. Ac-
cordingly, we can compute a good approximation to the top right singular vector in time
O(nd log(d/ϵ)).

How about when γ is very small? In the most extreme case, when γ = 0, power method
will never converge on v1 and in fact the dependence on 1/γ is unavoidable. However, if γ
is small, we don’t typically care about finding v1! Since σ1 = σ2, v2 is just as “good” of an
eigenvector as v1. It’s a good exercise to prove the following:

Theorem 7. After t = O
(
log(d/ϵ)

ϵ

)
iterations of power method, zt satisfies:

• ∥Azt∥2 ≥ (1− ϵ)σ1

• ∥A−Aztz
T
t ∥F ≤ (1 + ϵ)∥A−Av1v

T
1 ∥F

• ∥A−Aztz
T
t ∥2 ≤ (1 + ϵ)∥A−Av1v

T
1 ∥2

In other words, after O
(
log(d/ϵ)

ϵ

)
, by most common measures, projecting rows to zt still

gives a nearly optimal low-rank approximation for A. We’ve traded a 1/γ dependence for
a 1/ϵ dependence and a different, but arguably more natural approximation guarantee.

8 Beyond Power Method

Last class we discussed how low-rank approximations can be computed in a “greedy” way –
i.e. we find a rank 1 approximation to A, substract it off, then find a rank 1 approximation
to the remainder, continuing for k steps. We sum up all of these rank-1 approximations to
find a rank k approximation. This process is called “deflation” and it’s possible to show
that it works even when our rank-1 approximations are computed approximately (e.g. with
power method).

Other ways of obtaining rank k approximations include “blocked” versions of the power
method, where we derive k singular vectors from

(
ATA

)t
Z where Z ∈ Rd×k is a random

Gaussian matrix (instead of just a vector).
In either case, these iterative methods take O(t ·ndk) time to compute a nearly optimal

rank-k approximation, where either t = O(log dϵ) or depends on gaps between A’s singular
vectors. In practice, this is typically much faster than computing a full SVD. As an added
advantage, all of this runtime complexity comes from matrix-vector multiplications of the
form ATAx, which can be speed up beyond O(nd) time when A is sparse or when parallel
processing is available.

Finally, I’ll mention that it is actually possible to improve the iteration complexity of
the power method to t = O(log d√

ϵ
) using what is known as the Lanczos method. Variations

on the Lanczos method are used almost everywhere in practice (e.g. if you run svds in
MATLAB, Python, etc.). If you are interested, Chapter 10 in [5] gives a relatively simple
analysis for the rank-1 case.

12

References

[1] John Novembre, Toby Johnson, Katarzyna Bryc, Zoltan Kutalik, Adam R Boyko, Adam
Auton, Amit Indap, Karen King, Sven Bergmann, Matthew Nelson, Matthew Stephens,
Carlos Bustamante, . (2008). Genes Mirror Geography within Europe. Nature. 456. 274.

[2] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to
Information Retrieval, Cambridge University Press. 2008. https://nlp.stanford.edu/
IR-book/information-retrieval-book.html.

[3] T.K. Landauer, P.W. Foltz, and D. Laham. Introduction to Latent Semantic Analysis.
Discourse Processes, 25, 259-284. (1998)

[4] Le Gall, François. Powers of Tensors and Fast Matrix Multiplication. Proceedings of the
39th International Symposium on Symbolic and Algebraic Computation, 296–303. 2014.

[5] Sushant Sachdeva, Nisheeth K. Vishnoi. Faster Algorithms via Approximation The-
ory. Foundations and Trends in Theoretical Computer Science. 2013. https://theory.
epfl.ch/vishnoi/Publications_files/approx-survey.pdf.

[6] Daniel Spielman. Spectral Partitioning in a Stochastic Block Model. Lecture, Yale Uni-
versity. 2015. http://www.cs.yale.edu/homes/spielman/561/lect21-15.pdf.

[7] Chandler Davis, William Morton Kahan. The rotation of eigenvectors by a perturbation.
SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

[8] Van Vu. Spectral norm of random matrices. Combinatorica, 27(6):721–736, 2007.

https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://theory.epfl.ch/vishnoi/Publications_files/approx-survey.pdf
https://theory.epfl.ch/vishnoi/Publications_files/approx-survey.pdf
http://www.cs.yale.edu/homes/spielman/561/lect21-15.pdf

	Low-rank structure
	Example Applications
	The Singular Value Decomposition
	Greedily constructing low-rank approximations
	Computing the best rank-1 approximation
	Connection to Other Matrix Decompositions
	The Power Method
	Beyond Power Method
	Matrix decomposition and graphs
	Planted Bisection/Stochastic Block Model/Community Detection
	Eigenvalues of Random matrices

